Nature Communications (Aug 2021)

A hierarchical approach to removal of unwanted variation for large-scale metabolomics data

  • Taiyun Kim,
  • Owen Tang,
  • Stephen T. Vernon,
  • Katharine A. Kott,
  • Yen Chin Koay,
  • John Park,
  • David E. James,
  • Stuart M. Grieve,
  • Terence P. Speed,
  • Pengyi Yang,
  • Gemma A. Figtree,
  • John F. O’Sullivan,
  • Jean Yee Hwa Yang

DOI
https://doi.org/10.1038/s41467-021-25210-5
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 10

Abstract

Read online

Mass spectrometry-based metabolomics is a powerful method for profiling large clinical cohorts but batch variations can obscure biologically meaningful differences. Here, the authors develop a computational workflow that removes unwanted data variation while preserving biologically relevant information.