Scientific Reports (Mar 2021)

Determination of Dy substitution site in Nd2−xDyxFe14B by HAADF-STEM and illustration of magnetic anisotropy of “g” and “f” sites, before and after substitution

  • Syed Kamran Haider,
  • Min-Chul Kang,
  • Jisang Hong,
  • Young Soo Kang,
  • Cheol-Woong Yang,
  • Dongsoo Kim

DOI
https://doi.org/10.1038/s41598-021-85713-5
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Nd2Fe14B and Nd2−xDyxFe14B (x = 0.25, 0.50) particles were prepared by the modified co-precipitation followed by reduction–diffusion process. Bright field scanning transmission electron microscope (BF-STEM) image revealed the formation of Nd–Fe–B trigonal prisms in [− 101] viewing zone axis, confirming the formation of Nd2Fe14B/Nd2−xDyxFe14B. Accurate site for the Dy substitution in Nd2Fe14B crystal structure was determined as “f” site by using high-angle annular dark field scanning transmission electron microscope (HAADF-STEM). It was found that all the “g” sites are occupied by the Nd, meanwhile Dy occupied only the “f” site. Anti-ferromagnetic coupling at “f” site decreased the magnetic moment values for Nd1.75Dy0.25Fe14B (23.48 μB) and Nd1.5Dy0.5Fe14B (21.03 μB) as compared to Nd2Fe14B (25.50 μB). Reduction of magnetic moment increased the squareness ratio, coercivity and energy product. Analysis of magnetic anisotropy at constant magnetic field confirmed that “f” site substitution did not change the patterns of the anisotropy. Furthermore, magnetic moment of Nd2Fe14B, Nd2−xDyxFe14B, Nd (“f” site), Nd (“g” site) and Dy (“f” site) was recorded for all angles between 0° and 180°.