International Journal of Molecular Sciences (Aug 2024)

ZIF-8 as a pH-Responsive Nanoplatform for 5-Fluorouracil Delivery in the Chemotherapy of Oral Squamous Cell Carcinoma

  • Jessica Hao,
  • Chider Chen,
  • Kresimir Pavelic,
  • Fusun Ozer

DOI
https://doi.org/10.3390/ijms25179292
Journal volume & issue
Vol. 25, no. 17
p. 9292

Abstract

Read online

5-fluorouracil (5-FU), a chemotherapeutic agent against oral squamous cell carcinoma (OSCC), is limited by poor pharmacokinetics and toxicity. The pH-sensitive zeolite imidazolate framework-8 (ZIF-8) may increase the selectivity and length of 5-FU released into the acidic tumor microenvironment. This study examined the in vitro 5-FU absorption and release profiles of ZIF-8, and then progressed to cytotoxicity assays using the OSCC primary cell line SCC7. The 5-FU loading capacity of ZIF-8 was calculated with UV-vis spectroscopy (λ = 260 nm). 5-FU release was quantified by submerging 5-FU@ZIF-8 in pH 7.4 and 5.5 acetate buffer over 48 h. For the cytotoxicity assays, 5-FU, ZIF-8, and 5-FU@ZIF-8 were added to SCC7 cultures at 25, 50, and 100 μg/mL. Cell viability was assessed through toluidine blue staining and further quantified through transcriptomic RNA sequencing. ZIF-8 stabilized at a maximum absorption of 2.71 ± 0.22 mg 5-FU, and released 0.66 mg more 5-FU at pH 5.5 than 7.4 for at least 72 h. The cytotoxicity assays showed that 5-FU@ZIF-8 had a synergistic inhibitory effect at 50 μg/mL. The RNA sequencing analysis further revealed the molecular targets of 5-FU@ZIF-8 in SCC7. 5-FU@ZIF-8 may release 5-FU based on the pH of the surrounding microenvironments and synergistically inhibit OSCC.

Keywords