Applied Sciences (Feb 2021)
Nozzle with a Feedback Channel for Agricultural Drones
Abstract
In recent years, small drones have been used in agriculture, for spraying water and pesticides. Although spraying systems affect the efficiency of agricultural drones considerably, research on the spraying system of drones is insufficient. In this paper, a new nozzle with a feedback channel is proposed for agricultural drones. The proposed nozzle was manufactured through 3D printing, and its performance was compared with that of the nozzle used in commercial agricultural drones. Images taken with a high-speed camera were digitally processed, to track the area and location of spray particles, and the spraying characteristics were evaluated based on the size and uniformity of the droplets obtained from the images. The proposed nozzle provided a better performance, as it could spray smaller droplets more uniformly. Commercial nozzle droplets have an average diameter of 1.76 mm, and the proposed nozzle has been reduced to a maximum of 215 μm. In addition, the full width at half maximum (FWHM) of the commercial nozzle is 0.233, but the proposed nozzle is up to 1.519; the proposed nozzle provided better performance, as it could spray smaller droplets more uniformly. Under the condition of 30 kg, the best performance in the proposed nozzle, the minimum value of the average droplet diameter of the nozzle without feedback channel is 595 μm and the maximum value of FWHM is 1.329. Therefore, a comparison of the performance of the proposed nozzle with that of a nozzle with no feedback channel indicates that the feedback channel effectively reduces the droplet diameter and improves the spraying uniformity. It is expected that the proposed nozzle can be useful for designing the spraying systems of agricultural drones.
Keywords