Advanced Biomedical Research (Jan 2014)

Effect of acute hypoxia  on CXCR4 gene expression in C57BL/6 mouse bone marrow-derived mesenchymal stem cells

  • Mehdi Kadivar,
  • Najva Alijani,
  • Maryam Farahmandfar,
  • Saman Rahmati,
  • Nastaran Mohammadi Ghahhari,
  • Reza Mahdian

DOI
https://doi.org/10.4103/2277-9175.145682
Journal volume & issue
Vol. 3, no. 1
pp. 222 – 222

Abstract

Read online

Background: One of the most important stimuli in stem cell biology is oxygen. Chemokine receptor 4 (CXCR4) plays a crucial role in the migration and homing of stem cells. In this study, mesenchymal stem cells (MSCs) were exposed to 1% oxygen to investigate the effect of acute hypoxia on CXCR4 gene expression. Materials and Methods: MSCs were isolated from C57BL/6 mouse bone marrow and were identified and expanded in normoxic culture. Cells were incubated at 37°C under 1% hypoxic conditions for periods of 4, 8, 16, 24, and 48 h. After hypoxia preconditioning, the cells were placed in normoxic condition for 8 h to achieve cellular hypoxia-reoxygenation. To assess the level of CXC R4 gene expression, real-time quantitative reverse transcription-polymerase chain reaction was carried out for each group. Results: Data from statistical analysis illustrated that exposure of MSCs to acute hypoxic condition down-regulates CXCR4 expression with the maximum under-expression observed in 4 h (0.91 ± 0.107) and 8 h (50 ± 2.98) groups. Moreover, the relative gene expression of CXCR4 was decreased after hypoxia-reoxygenation by more than 80% in 4 h (0.136 ± 0.018) and 24 h (12.77 ± 0.707) groups. Conclusion: The results suggest that CXCR4 expression in MSCs decreases upon acute hypoxic stress. Furthermore, hypoxia-reoxygenated MSCs showed decreased expression of CXCR4, compared to cells subjected to acute hypoxia. This difference could have resulted from the cells being compatible with low oxygen metabolism. In summary, before the therapeutic application of MSCs, it should be regarded as a necessity to optimize the oxygen concentration in these cells, as it is a critical factor in modulating CXCR4 expression.

Keywords