Scientific Reports (Aug 2024)

Preparation and performance control of ultra-low near-infrared reflectivity coatings with super-hydrophobic and outstanding mechanical properties

  • Weigang Zhang,
  • Yueting Zhuang,
  • Jialun Zhang,
  • Qianfeng Zhang

DOI
https://doi.org/10.1038/s41598-024-71164-1
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 14

Abstract

Read online

Abstract The development of ultra-low near-infrared reflectivity coatings with outstanding engineering properties remains a challenge in laser stealth materials research. Herein, we reported a laser stealth coating with outstanding mechanical properties, super-hydrophobicity, and an ultra-low near-infrared reflectivity for 1.06 μm wavelength. The effects of the mass ratio of graphene to nano-SiO2, the proportion of total filler, the addition of KH560, the mass ratio of Polydimethylsiloxane (PDMS) to acrylic-modified polyurethane (APU), and the addition of dioctyl phthalate (DOP) on the coating properties were thoroughly discussed. The coating can achieve a low reflectivity of 9.3% at 1.06 μm and a high water contact angle of 152° at a mass ratio of 7:3 for PDMS to APU and 6:4 for graphene to nano-SiO2 with a total filler amount of 40 wt%. KH560 can play a bridging role between the blended resin matrix and nano-SiO2, which can significantly improve the impact strength of the coating. The DOP, which contains a polar ester group and a non-polar carbon chain structure, can be inserted between the molecular chains of the resin to weaken the intermolecular force of the resin, so that the flexibility of the coating can be significantly improved. Adding KH560 at 4 wt% and DOP at 1 wt%, resulted in a coating with ultra-low near-infrared reflectivity of 1.06 μm (9.3%), super-hydrophobic properties, outstanding adhesion strength (grade 2), flexibility (2 mm), and impact strength (50 kg cm). The above super-hydrophobic ultra-low near-infrared reflectivity coating has significant potential for use in the field of laser stealth equipment, and it can serve as a useful reference for optimizing the mechanical properties of super-hydrophobic functional coatings.

Keywords