E3S Web of Conferences (Jan 2023)
Axial compressive behavior of green sustainable Water Hyacinth & Bio-Resin (WHBR) FRP composites-confined circular concrete
Abstract
This study examines the behavior of circular concretes externally confined by green sustainable WHBR FRP containing water hyacinth fiber ropes and bio-resin. This study principally purposes to discover the axial stress-strain relationship behavior of WHBR FRP-confined circular concrete. A total of 10 circular concretes with a dimension of 150×300 mm were cast, strengthened with one to four layers of WHBR FRP, and tested under compression. The stress and the deformability of WHBR FRP-confined circular concretes were observed to be increased along with the addition of WHBR FRP layers. The accurateness of existing ultimate stress and strain models of natural FRP-confined circular concrete was evaluated using the test results. Indicating the need for the newly developed models to precisely predict the ultimate stress and strain values of WHBR FRP-confined circular concrete, newly developed models were developed to be precise in estimating the ultimate stress and strain of WHBR FRP-confined circular concrete. Keywords concrete, confinement, disaster risk reduction, stress-strain, water hyacinth fiber.