PLoS ONE (Jan 2023)

Development and validation of risk prediction model for diabetic neuropathy among diabetes mellitus patients at selected referral hospitals, in Amhara regional state Northwest Ethiopia, 2005-2021.

  • Negalgn Byadgie Gelaw,
  • Achenef Asmamaw Muche,
  • Adugnaw Zeleke Alem,
  • Nebiyu Bekele Gebi,
  • Yazachew Moges Chekol,
  • Tigabu Kidie Tesfie,
  • Tsion Mulat Tebeje

DOI
https://doi.org/10.1371/journal.pone.0276472
Journal volume & issue
Vol. 18, no. 8
p. e0276472

Abstract

Read online

BackgroundDiabetic neuropathy is the most common complication in both Type-1 and Type-2 DM patients with more than one half of all patients developing nerve dysfunction in their lifetime. Although, risk prediction model was developed for diabetic neuropathy in developed countries, It is not applicable in clinical practice, due to poor data, methodological problems, inappropriately analyzed and reported. To date, no risk prediction model developed for diabetic neuropathy among DM in Ethiopia, Therefore, this study aimed prediction the risk of diabetic neuropathy among DM patients, used for guiding in clinical decision making for clinicians.ObjectiveDevelopment and validation of risk prediction model for diabetic neuropathy among diabetes mellitus patients at selected referral hospitals, in Amhara regional state Northwest Ethiopia, 2005-2021.MethodsA retrospective follow up study was conducted with a total of 808 DM patients were enrolled from January 1,2005 to December 30,2021 at two selected referral hospitals in Amhara regional state. Multi-stage sampling techniques were used and the data was collected by checklist from medical records by Kobo collect and exported to STATA version-17 for analysis. Lasso method were used to select predictors and entered to multivariable logistic regression with P-valueResultsThe incidence proportion of diabetic neuropathy among DM patients was 21.29% (95% CI; 18.59, 24.25). In multivariable logistic regression glycemic control, other comorbidities, physical activity, hypertension, alcohol drinking, type of treatment, white blood cells and red blood cells count were statistically significant. Nomogram was developed, has discriminating power AUC; 73.2% (95% CI; 69.0%, 77.3%) and calibration test (P-value = 0.45). It was internally validated by bootstrapping method with discrimination performance 71.7 (95% CI; 67.2%, 75.9%). It had less optimism coefficient (0.015). To make nomogram accessible, mobile based tool were developed. In machine learning, classification and regression tree has discriminating performance of 70.2% (95% CI; 65.8%, 74.6%). The model had high net benefit at different threshold probabilities in both nomogram and classification and regression tree.ConclusionThe developed nomogram and decision tree, has good level of accuracy and well calibration, easily individualized prediction of diabetic neuropathy. Both models had added net benefit in clinical practice and to be clinically applicable mobile based tool were developed.