Remote Sensing (May 2021)

Assessing the Accuracy of ALOS/PALSAR-2 and Sentinel-1 Radar Images in Estimating the Land Subsidence of Coastal Areas: A Case Study in Alexandria City, Egypt

  • Noura Darwish,
  • Mona Kaiser,
  • Magaly Koch,
  • Ahmed Gaber

DOI
https://doi.org/10.3390/rs13091838
Journal volume & issue
Vol. 13, no. 9
p. 1838

Abstract

Read online

Recently, the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique is widely used for quantifying the land surface deformation, which is very important to assess the potential impact on social and economic activities. Radar satellites operate in different wavelengths and each provides different levels of vertical displacement accuracy. In this study, the accuracies of Sentinel-1 (C-band) and ALOS/PALSAR-2 (L-band) were investigated in terms of estimating the land subsidence rate along the study area of Alexandria City, Egypt. A total of nine Sentinel-1 and 11 ALOS/PALSAR-2 scenes were used for such assessment. The small baseline subset (SBAS) processing scheme, which detects the land deformation with a high spatial and temporal coverage, was performed. The results show that the threshold coherence values of the generated interferograms from ALOS-2 data are highly concentrated between 0.2 and 0.3, while a higher threshold value of 0.4 shows no coherent pixels for about 80% of Alexandria’s urban area. However, the coherence values of Sentinel-1 interferograms ranged between 0.3 and 1, with most of the urban area in Alexandria showing coherent pixels at a 0.4 value. In addition, both data types produced different residual topography values of almost 0 m with a standard deviation of 13.5 m for Sentinel-1 and −20.5 m with a standard deviation of 33.24 m for ALOS-2 using the same digital elevation model (DEM) and wavelet number. Consequently, the final deformation was estimated using high coherent pixels with a threshold of 0.4 for Sentinel-1, which is comparable to a threshold of about 0.8 when using ALOS-2 data. The cumulative vertical displacement along the study area from 2017 to 2020 reached −60 mm with an average of −12.5 mm and mean displacement rate of −1.73 mm/year. Accordingly, the Alexandrian coastal plain and city center are found to be relatively stable, with land subsidence rates ranging from 0 to −5 mm/year. The maximum subsidence rate reached −20 mm/year and was found along the boundary of Mariout Lakes and former Abu Qir Lagoon. Finally, the affected buildings recorded during the field survey were plotted on the final land subsidence maps and show high consistency with the DInSAR results. For future developmental urban plans in Alexandria City, it is recommended to expand towards the western desert fringes instead of the south where the present-day ground lies on top of the former wetland areas.

Keywords