Remote Sensing (Sep 2024)

Projecting Response of Ecological Vulnerability to Future Climate Change and Human Policies in the Yellow River Basin, China

  • Xiaoyuan Zhang,
  • Shudong Wang,
  • Kai Liu,
  • Xiankai Huang,
  • Jinlian Shi,
  • Xueke Li

DOI
https://doi.org/10.3390/rs16183410
Journal volume & issue
Vol. 16, no. 18
p. 3410

Abstract

Read online

Exploring the dynamic response of land use and ecological vulnerability (EV) to future climate change and human ecological restoration policies is crucial for optimizing regional ecosystem services and formulating sustainable socioeconomic development strategies. This study comprehensively assesses future land use changes and EV in the Yellow River Basin (YRB), a climate-sensitive and ecologically fragile area, by integrating climate change, land management, and ecological protection policies under various scenarios. To achieve this, we developed an EV assessment framework combining a scenario weight matrix, Markov chain, Patch-generating Land Use Simulation model, and exposure–sensitivity–adaptation. We further explored the spatiotemporal variations of EV and their potential socioeconomic impacts at the watershed scale. Our results show significant geospatial variations in future EV under the three scenarios, with the northern region of the upstream area being the most severely affected. Under the ecological conservation management scenario and historical trend scenario, the ecological environment of the basin improves, with a decrease in very high vulnerability areas by 4.45% and 3.08%, respectively, due to the protection and restoration of ecological land. Conversely, under the urban development and construction scenario, intensified climate change and increased land use artificialization exacerbate EV, with medium and high vulnerability areas increasing by 1.86% and 7.78%, respectively. The population in high and very high vulnerability areas is projected to constitute 32.75–33.68% and 34.59–39.21% of the YRB’s total population in 2040 and 2060, respectively, and may continue to grow. Overall, our scenario analysis effectively demonstrates the positive impact of ecological protection on reducing EV and the negative impact of urban expansion and economic development on increasing EV. Our work offers new insights into land resource allocation and the development of ecological restoration policies.

Keywords