Polymers (Apr 2021)

Heat Scanning for the Fabrication of Conductive Fibers

  • Jina Jang,
  • Haoyu Zhou,
  • Jungbae Lee,
  • Hakgae Kim,
  • Jung Bin In

DOI
https://doi.org/10.3390/polym13091405
Journal volume & issue
Vol. 13, no. 9
p. 1405

Abstract

Read online

Conductive fibers are essential building blocks for implementing various functionalities in a textile platform that is highly conformable to mechanical deformation. In this study, two major techniques were developed to fabricate silver-deposited conductive fibers. First, a droplet-coating method was adopted to coat a nylon fiber with silver nanoparticles (AgNPs) and silver nanowires (AgNWs). While conventional dip coating uses a large ink pool and thus wastes coating materials, droplet-coating uses minimal quantities of silver ink by translating a small ink droplet along the nylon fiber. Secondly, the silver-deposited fiber was annealed by similarly translating a tubular heater along the fiber to induce sintering of the AgNPs and AgNWs. This heat-scanning motion avoids excessive heating and subsequent thermal damage to the nylon fiber. The effects of heat-scanning time and heater power on the fiber conductance were systematically investigated. A conductive fiber with a resistance as low as ~2.8 Ω/cm (0.25 Ω/sq) can be produced. Finally, it was demonstrated that the conductive fibers can be applied in force sensors and flexible interconnectors.

Keywords