Regenerative Therapy (Jun 2023)

Effects of combined application of fibroblast growth factor (FGF)-2 and carbonate apatite for tissue regeneration in a beagle dog model of one-wall periodontal defect

  • Toshie Nagayasu-Tanaka,
  • Jun Anzai,
  • Masahide Takedachi,
  • Masahiro Kitamura,
  • Tatsuhiro Harada,
  • Shinya Murakami

Journal volume & issue
Vol. 23
pp. 84 – 93

Abstract

Read online

Introduction: There has been an increasing desire for the development of predictive periodontal regenerative therapy for severe periodontitis. In this study, we investigated the effect of the combined use of fibroblast growth factor-2 (FGF-2), a drug for periodontal regeneration approved in Japan, and carbonated apatite (CO3Ap), bioresorbable and osteoconductive scaffold, on periodontal regeneration in beagle dog model of one-wall periodontal defect (severe intraosseous defect) for 24 weeks in comparison with CO3Ap or vehicle alone. Methods: One-wall periodontal defects were created (mesiodistal width × depth: 4 × 4 mm) on the mesial portion of the mandibular first molar (M1) of beagle dogs on both side. Mixture of FGF-2 and CO3Ap, vehicle and CO3Ap, or vehicle alone were administered to the defects and designated as groups FGF-2+CO3Ap, CO3Ap, and control, respectively. To assess the periodontal regeneration, radiographic analysis over time for 24 weeks, and micro computed tomography (μCT) and histological evaluation at 6 and 24 weeks were performed. Results: For the regenerated tissue in the defect site, the mineral content of the FGF-2+CO3Ap group was higher than that of the CO3Ap group in the radiographic analysis at 6–24 weeks. In the context of new bone formation and replacement, the FGF-2+CO3Ap group exhibited significantly greater new bone volume and smaller CO3Ap volume than the CO3Ap group in the μCT analysis at 6 and 24 weeks. Furthermore, the density of the new bone in the FGF-2+CO3Ap group at 24 weeks was similar to those in the control and CO3Ap groups. Histological evaluation revealed that the length of the new periodontal ligament and cementum in the FGF-2+CO3Ap group was greater than that in the CO3Ap group at 6 weeks. We also examined the effect of the combined use of the FGF-2 and CO3Ap on the existing bone adjacent to the defect and demonstrated that the existing bone height and volume in the FGF-2+CO3Ap group remained significantly greater than those in the CO3Ap group. Conclusion: This study demonstrated that the combination of FGF-2 and CO3Ap was effective not only in enhancing new bone formation and replacing scaffold but also in maintaining the existing bone adjacent to the defect site in a beagle dog model of one-wall periodontal defect. Additionally, new periodontal tissues induced by FGF-2 and CO3Ap may follow a maturation process similar to that formed by spontaneous healing. This suggests that the combined use of FGF-2 and CO3Ap would promote periodontal regeneration in severe bony defects of periodontitis patient.

Keywords