Molecules (Dec 2022)

Investigating Rubidium Density and Temperature Distributions in a High-Throughput <sup>129</sup>Xe-Rb Spin-Exchange Optical Pumping Polarizer

  • James E. Ball,
  • Jim M. Wild,
  • Graham Norquay

DOI
https://doi.org/10.3390/molecules28010011
Journal volume & issue
Vol. 28, no. 1
p. 11

Abstract

Read online

Accurate knowledge of the rubidium (Rb) vapor density, [Rb], is necessary to correctly model the spin dynamics of 129Xe-Rb spin-exchange optical pumping (SEOP). Here we present a systematic evaluation of [Rb] within a high-throughput 129Xe-Rb hyperpolarizer during continuous-flow SEOP. Near-infrared (52S1/2→52P1/2 (D1)/52P3/2 (D2)) and violet (52S1/2→62P1/2/62P3/2) atomic absorption spectroscopy was used to measure [Rb] within 3.5 L cylindrical SEOP cells containing different spatial distributions and amounts of Rb metal. We were able to quantify deviation from the Beer-Lambert law at high optical depth for D2 and 62P3/2 absorption by comparison with measurements of the D1 and 62P1/2 absorption lines, respectively. D2 absorption deviates from the Beer-Lambert law at [Rb]D2>4×1017 m−3 whilst 52S1/2→62P3/2 absorption deviates from the Beer-Lambert law at [Rb]6P3/2>(4.16±0.01)×1019 m−3. The measured [Rb] was used to estimate a 129Xe-Rb spin exchange cross section of γ′=(1.2±0.1)×10−21 m3 s−1, consistent with spin-exchange cross sections from the literature. Significant [Rb] heterogeneity was observed in a SEOP cell containing 1 g of Rb localized at the back of the cell. While [Rb] homogeneity was improved for a greater surface area of the Rb source distribution in the cell, or by using a Rb presaturator, the measured [Rb] was consistently lower than that predicted by saturation Rb vapor density curves. Efforts to optimize [Rb] and thermal management within spin polarizer systems are necessary to maximize potential future enhancements of this technology.

Keywords