Agropecuária Catarinense (Dec 2023)

Avaliação de algoritmos computacionais de reconhecimento digital de alvéolos em favos de abelhas africanizadas

  • Hamilton Justino Vieira,
  • Carlos Eduardo Salles de Araújo,
  • André Amarildo Sezerino,
  • Tânia Patrícia Schafaschek,
  • Rafael Canan

Journal volume & issue
Vol. 36

Abstract

Read online

As metodologias analógicas são bastante utilizadas para avaliar o estado geral, monitorar e estimar o desenvolvimento de colônias de abelhas Apis mellifera. Apesar de sua importância, tais métodos usados durante a etapa de campo são dificultosos, demorados e invasivos. Para verificar possibilidade de suprimir estas dificuldades, utilizou-se o software livre DeepBee©, de reconhecimento e classificação automática de alvéolos em imagens digitais. As imagens digitais foram obtidas com celular Androide utilizando-se uma câmara com iluminação artificial e sistema Bluetooth. As imagens foram obtidas em duas colmeias do tipo Langstroth, totalizando 28 imagens digitais. As colmeias estavam nos municípios de Videira e Caçador, em SC. O software DeepBee© detectou automaticamente sete classes de alvéolos: ovos, larvas, crias operculadas, pólen, néctar, mel e outros. Os algoritmos de processamento digital, topologia matemática e de reconhecimento de padrões por meio de redes neurais do DeepBee© permitiram a identificação do estado geral das colônias. Algumas falhas verificadas no reconhecimento de padrões sugerem necessidade de um novo treinamento da rede neural do software DeepBee© de forma a torná-lo uma ferramenta operacional para o acompanhamento do desenvolvimento das colônias de Apis mellifera africanizadas.

Keywords