Electronic Research Archive (Jan 2023)

Improved active disturbance rejection controller for rotor system of magnetic levitation turbomachinery

  • Tongtong Yu ,
  • Zhizhou Zhang ,
  • Yang Li ,
  • Weilong Zhao ,
  • Jinchu Zhang

DOI
https://doi.org/10.3934/era.2023080
Journal volume & issue
Vol. 31, no. 3
pp. 1570 – 1586

Abstract

Read online

The rotor of the magnetic suspension turbomachinery is supported by the magnetic suspension bearing without contact and mechanical friction, which directly drives the high-efficiency fluid impeller. It has the advantages of high efficiency, low noise, less fault and no lubrication. However, the system often has some unknown mutation, time variation, load perturbation and other un-certainties when working, and the traditional Proportion Integration Differentiation (PID) control strategy has great limitations to overcome the above disturbances. Therefore, this paper firstly establishes a mathematical model of the rotor of magnetic levitation turbomachinery. Then, a linear active disturbance rejection controller (LADRC) is presented, which can not only improve the above problems of PID control, but also avoid the complex parameter tuning process of traditional nonlinear active disturbance rejection control (ADRC). However, LADRC is easy to induce the overshoot of the system and cannot filter the given signal. On this basis, an improved LADRC with a fast-tracking differentiator (FTD) is proposed to arrange the transition process of input signals. The simulation results show that compared with the traditional PID controller and single LADRC, the improved linear active disturbance rejection control method with fast tracking differentiator (FTD-LADRC) can better suppress some unknown abrupt changes, time variation and other uncertainties of the electromagnetic bearing-rotor system. At the same time, the overshoot of the system is smaller, and the parameters are easy to be set, which is convenient for engineering application.

Keywords