Frontiers in Psychology (Oct 2018)

More Than Eggs – Relationship Between Productivity and Learning in Laying Hens

  • Anissa Dudde,
  • Anissa Dudde,
  • E. Tobias Krause,
  • Lindsay R. Matthews,
  • Lindsay R. Matthews,
  • Lars Schrader

DOI
https://doi.org/10.3389/fpsyg.2018.02000
Journal volume & issue
Vol. 9

Abstract

Read online

The intense selection of chickens for production traits, such as egg laying, is thought to cause undesirable side effects and changes in behavior. Trade-offs resulting from energy expenditure in productivity may influence other traits: in order to sustain energetic costs for high egg production, energy expenditure may be redirected away from specific behavioral traits. For example, such energetic trade-offs may change the hens’ cognitive abilities. Therefore, we hypothesized highly productive laying hens to show reduced learning performance in comparison to moderate productive lines. We examined the learning ability of four chicken lines that differed in laying performance (200 versus 300 eggs/year) and phylogenetic origin (brown/white layer; respectively, within performance). In total 61 hens were tested in semi-automated Skinner boxes in a three-phase learning paradigm (initial learning, reversal learning, extinction). To measure the hens’ learning performance within each phase, we compared the number of active decisions needed to fulfill a learning criteria (80% correct choices for learning, 70% no responses at extinction) using linear models. Differences between the proportions of hens per line that reached criterion on each phase of the learning tasks were analyzed by using a Kaplan–Meier (KM) survival analysis. A greater proportion of high productive hens achieved the learning criteria on each phase compared to less productive hens (Chi23 = 8.25, p = 0.041). Furthermore, high productive hens accomplished the learning criteria after fewer active decisions in the initial phase (p = 0.012) and in extinction (p = 0.004) compared to the less selected lines. Phylogenetic origin was associated with differences in learning in extinction. Our results contradict our hypothesis and indicate that the selection for productivity traits has led to changes in learning behavior and the high productive laying hens possessed a better learning strategy compared to moderate productive hens in a feeding-rewarding context. This better performance may be a response to constraints resulting from high selection as it may enable these hens to efficiently acquire additional energy resources. Underlying mechanisms for this may be directly related to differences in neuronal structure or indirectly to foraging strategies and changes in personality traits such as fearfulness and sociality.

Keywords