Zoological Letters (Jun 2022)

A new, widespread venomous mammal species: hemolytic activity of Sorex araneus venom is similar to that of Neomys fodiens venom

  • Krzysztof Kowalski,
  • Paweł Marciniak,
  • Leszek Rychlik

DOI
https://doi.org/10.1186/s40851-022-00191-5
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Venom production has evolved independently many times in the animal kingdom, although it is rare among mammals. Venomous shrews produce toxins in their salivary glands and use their venoms to hunt and store prey. Thus far, the toxicity and composition of shrew venoms have been studied only in two shrew species: the northern short-tailed shrew, Blarina brevicauda, and the Eurasian water shrew, Neomys fodiens. Venom of N. fodiens has potent paralytic activity which enables hunting and storing prey in a comatose state. Here, we assayed the hemolytic effects of extracts from salivary glands of N. fodiens and the common shrew, Sorex araneus, in erythrocytes of Pelophylax sp. frogs. We identified toxins in shrew venom by high-performance liquid chromatography coupled to tandem mass spectrometry. Results Our results prove, confirming a suggestion made four centuries ago, that S. araneus is venomous. We also provide the first experimental evidence that shrew venoms produce potent hemolysis in frog erythrocytes. We found significant concentration-dependent effects of venoms of N. fodiens and S. araneus on hemolysis of red blood cells evaluated as hemoglobin release. Treatment of erythrocytes with N. fodiens venom at concentrations of 1.0 and 0.5 mg/ml and with S. araneus venom at concentration of 1.0 mg/ml caused an increased release of hemoglobin. Our findings confirm that hemolytic effects of N. fodiens venom are stronger than those produced by S. araneus venom. We identified four toxins in the venom of N. fodiens: proenkephalin, phospholipase A2 (PLA2), a disintegrin and metalloproteinase domain-containing protein (ADAM) and lysozyme C, as well as a non-toxic hyaluronidase. In the venom of S. araneus we found five toxins: proenkephalin, kallikrein 1-related peptidase, beta-defensin, ADAM and lysozyme C. PLA2 and ADAMs are likely to produce hemolysis in frog erythrocytes. Conclusions Our results clearly show that shrew venoms possess hemolytic action that may allow them to hunt larger prey. Since a member of the numerous genus Sorex is venomous, it is likely that venom production among shrews and other eulipotyphlans may be more widespread than it has previously been assumed.

Keywords