International Transactions on Electrical Energy Systems (Jan 2024)

Enhancing Speed of Distance Protection for Internal Faults in the Second Zone through an Innovative Protection Algorithm

  • Sabah Daniar,
  • Mojtaba Shiroei,
  • Amirhossein Khosravi Sarvenoee

DOI
https://doi.org/10.1155/2024/9100505
Journal volume & issue
Vol. 2024

Abstract

Read online

Electric power systems constantly encounter disturbances and faults, necessitating fast and precise identification and rectification of these issues. This is crucial for ensuring the stability and reliability of the system. This paper introduces a protection scheme for accelerating the second zone operation of the distance relay during internal faults. The proposed scheme exploits the locus of power with positive power characteristics to effectively distinguish between internal and external faults. This is achieved by detecting the remote circuit breaker operation (RCBO). The locus of power remains predominantly within regions 1 or 2, with occasional transfers between these regions due to internal faults prior to and following the RCBO. Conversely, in the case of external faults, regions 3 or 4 are implicated. This distinct variation in the locus of power is applied to derive the protection algorithm. This is affirmed through sequence network analysis of various faults in the transmission line. The cumulative rate of change in relative reactive power has been employed for single-phase RCBO detection. The proposed protection logic employs supplementary undervoltage logic to avoid single-phase operation during two-phase and three-phase faults. The simulations are conducted with meticulous consideration of key factors, such as fault type, fault resistance, fault location, fault inception angle, and power source angle. Simulation results demonstrate the effectiveness of the proposed protection scheme.