Applied Sciences (Nov 2021)
Towards Health Equality: Optimizing Hierarchical Healthcare Facilities towards Maximal Accessibility Equality in Shenzhen, China
Abstract
Equal accessibility to healthcare services is essential to the achievement of health equality. Recent studies have made important progresses in leveraging GIS-based location–allocation models to optimize the equality of healthcare accessibility, but have overlooked the hierarchical nature of facilities. This study developed a hierarchical maximal accessibility equality model for optimizing hierarchical healthcare facilities. The model aims to maximize the equality of healthcare facilities, which is quantified as the variance of the accessibility to facilities at each level. It also accounts for different catchment area sizes of, and distance friction effects for hierarchical facilities. To make the optimization more realistic, it can also simultaneously consider both existing and new facilities that can be located anywhere. The model was operationalized in a case study of Shenzhen, China. Empirical results indicate that the optimal healthcare facility allocation based on the model provided more equal accessibility than the status quo. Compared to the current distribution, the accessibility equality of tertiary and secondary healthcare facilities in optimal solutions can be improved by 40% and 38%, respectively. Both newly added facilities and adjustments of existing facilities are needed to achieve equal healthcare accessibility. Furthermore, the optimization results are quite different for facilities at different levels, which highlights the feasibility and value of the proposed hierarchical maximal accessibility equality model. This study provides transferable methods for the equality-oriented optimization and planning of hierarchical facilities.
Keywords