Advances in Materials Science and Engineering (Jan 2015)

Shear Strengthening Performance of Hybrid FRP-FRCM

  • Kyusan Jung,
  • Kinam Hong,
  • Sanghoon Han,
  • Jaekyu Park,
  • Jaehyun Kim

DOI
https://doi.org/10.1155/2015/564876
Journal volume & issue
Vol. 2015

Abstract

Read online

The effectiveness of a hybrid fiber reinforced polymer- (FRP-) fabric reinforced cementitious matrix (FRCM) for shear strengthening was investigated though an experimental study. FRP materials of FRCM are usually fabricated in the form of a fabric to enhance the bond strength between the FRP material and the cementitious matrix. The hybrid FRP fabric used in this study consisted of carbon FRP (CFRP) and glass FRP (GFRP) in warp and weft directions, respectively. A total of 11 beams were fabricated and 8 beams among them were strengthened in shear with externally bonded hybrid FRP-FRCM. The number of plies, the bond types, and the spacing of the hybrid FRP fabric were considered as experimental variables. Additionally, a shear capacity model for a FRCM shear strengthened beam was proposed. The values predicted by the proposed model were compared with those by the ACI 549 code and test results. It was confirmed from the comparison that the proposed model predicted the shear strengthening performance of the hybrid FRP-FRCM more reliably than the ACI 549 code did.