Advances in Medical Education and Practice (Feb 2018)

Surgical simulation training in orthopedics: current insights

  • Kalun P,
  • Wagner N,
  • Yan J,
  • Nousiainen MT,
  • Sonnadara RR

Journal volume & issue
Vol. Volume 9
pp. 125 – 131

Abstract

Read online

Portia Kalun,1 Natalie Wagner,1 James Yan,2 Markku T Nousiainen,3 Ranil R Sonnadara1,4 1Office of Education Science, Department of Surgery, McMaster University, Hamilton, ON, Canada; 2Division of Orthopaedic Surgery, Department of Surgery, McMaster University, Hamilton, ON, Canada; 3Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; 4Department of Surgery, University of Toronto, Toronto, ON, Canada Background: While the knowledge required of residents training in orthopedic surgery continues to increase, various factors, including reductions in work hours, have resulted in decreased clinical learning opportunities. Recent work suggests residents graduate from their training programs without sufficient exposure to key procedures. In response, simulation is increasingly being incorporated into training programs to supplement clinical learning. This paper reviews the literature to explore whether skills learned in simulation-based settings results in improved clinical performance in orthopedic surgery trainees. Materials and methods: A scoping review of the literature was conducted to identify papers discussing simulation training in orthopedic surgery. We focused on exploring whether skills learned in simulation transferred effectively to a clinical setting. Experimental studies, systematic reviews, and narrative reviews were included. Results: A total of 15 studies were included, with 11 review papers and four experimental studies. The review articles reported little evidence regarding the transfer of skills from simulation to the clinical setting, strong evidence that simulator models discriminate among different levels of experience, varied outcome measures among studies, and a need to define competent performance in both simulated and clinical settings. Furthermore, while three out of the four experimental studies demonstrated transfer between the simulated and clinical environments, methodological study design issues were identified. Conclusion: Our review identifies weak evidence as to whether skills learned in simulation transfer effectively to clinical practice for orthopedic surgery trainees. Given the increased reliance on simulation, there is an immediate need for comprehensive studies that focus on skill transfer, which will allow simulation to be incorporated effectively into orthopedic surgery training programs. Keywords: orthopedics, simulation, postgraduate medical education, scoping review, transfer

Keywords