Journal of Engineered Fibers and Fabrics (Mar 2009)
Simulation of Multifilament Semicrystalline Polymer Fiber Melt-Spinning
Abstract
The goal of this effort is to provide an accurate simulation of multifilament fiber melt spinning, applicable for a wide range of material and process conditions. For ease of use, the model should run on a standard laptop or desktop computer in reasonable time (one hour or less). Most melt spinning models simulate the formation of a single filament, with little or no attention given to multifilament effects. Available multifilament simulations are primarily limited to Newtonian constitutive models for the polymer flow. We present a multifilament simulation based on the flow-enhanced crystallization approach of Shrikhande et al. [J. Appl. Polym. Sci., 100, 2006, 3240-3254] combined with a variant on the multifilament quench model of Zhang, et al. [J. Macromol. Sci. Phys., 47, 2007, 793-806]. We demonstrate the versatility of this model by applying it to isotactic polypropylene and polyethylene terephthalate, under a variety of process conditions.