Applied Sciences (Dec 2018)

The Fractional Form of the Tinkerbell Map Is Chaotic

  • Adel Ouannas,
  • Amina-Aicha Khennaoui,
  • Samir Bendoukha,
  • Thoai Phu Vo,
  • Viet-Thanh Pham,
  • Van Van Huynh

DOI
https://doi.org/10.3390/app8122640
Journal volume & issue
Vol. 8, no. 12
p. 2640

Abstract

Read online

This paper is concerned with a fractional Caputo-difference form of the well-known Tinkerbell chaotic map. The dynamics of the proposed map are investigated numerically through phase plots, bifurcation diagrams, and Lyapunov exponents considered from different perspectives. In addition, a stabilization controller is proposed, and the asymptotic convergence of the states is established by means of the stability theory of linear fractional discrete systems. Numerical results are employed to confirm the analytical findings.

Keywords