Genome Biology (Jan 2025)

MaveDB 2024: a curated community database with over seven million variant effects from multiplexed functional assays

  • Alan F. Rubin,
  • Jeremy Stone,
  • Aisha Haley Bianchi,
  • Benjamin J. Capodanno,
  • Estelle Y. Da,
  • Mafalda Dias,
  • Daniel Esposito,
  • Jonathan Frazer,
  • Yunfan Fu,
  • Sally B. Grindstaff,
  • Matthew R. Harrington,
  • Iris Li,
  • Abbye E. McEwen,
  • Joseph K. Min,
  • Nick Moore,
  • Olivia G. Moscatelli,
  • Jesslyn Ong,
  • Polina V. Polunina,
  • Joshua E. Rollins,
  • Nathan J. Rollins,
  • Ashley E. Snyder,
  • Amy Tam,
  • Matthew J. Wakefield,
  • Shenyi Sunny Ye,
  • Lea M. Starita,
  • Vanessa L. Bryant,
  • Debora S. Marks,
  • Douglas M. Fowler

DOI
https://doi.org/10.1186/s13059-025-03476-y
Journal volume & issue
Vol. 26, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Multiplexed assays of variant effect (MAVEs) are a critical tool for researchers and clinicians to understand genetic variants. Here we describe the 2024 update to MaveDB ( https://www.mavedb.org/ ) with four key improvements to the MAVE community’s database of record: more available data including over 7 million variant effect measurements, an improved data model supporting assays such as saturation genome editing, new built-in exploration and visualization tools, and powerful APIs for data federation and streamlined submission and access. Together these changes support MaveDB’s role as a hub for the analysis and dissemination of MAVEs now and into the future.

Keywords