Molecular Autism (Dec 2020)
Alpha connectivity and inhibitory control in adults with autism spectrum disorder
Abstract
Abstract Background Individuals with autism spectrum disorder (ASD) often report difficulties with inhibition in everyday life. During inhibition tasks, adults with ASD show reduced activation of and connectivity between brain areas implicated in inhibition, suggesting impairments in inhibitory control at the neural level. Our study further investigated these differences by using magnetoencephalography (MEG) to examine the frequency band(s) in which functional connectivity underlying response inhibition occurs, as brain functions are frequency specific, and whether connectivity in certain frequency bands differs between adults with and without ASD. Methods We analysed MEG data from 40 adults with ASD (27 males; 26.94 ± 6.08 years old) and 39 control adults (27 males; 27.29 ± 5.94 years old) who performed a Go/No-go task. The task involved two blocks with different proportions of No-go trials: Inhibition (25% No-go) and Vigilance (75% No-go). We compared whole-brain connectivity in the two groups during correct No-go trials in the Inhibition vs. Vigilance blocks between 0 and 400 ms. Results Despite comparable performance on the Go/No-go task, adults with ASD showed reduced connectivity compared to controls in the alpha band (8–14 Hz) in a network with a main hub in the right inferior frontal gyrus. Decreased connectivity in this network predicted more self-reported difficulties on a measure of inhibition in everyday life. Limitations Measures of everyday inhibitory control were not available for all participants, so this relationship between reduced network connectivity and inhibitory control abilities may not be necessarily representative of all adults with ASD or the larger ASD population. Further research with independent samples of adults with ASD, including those with a wider range of cognitive abilities, would be valuable. Conclusions Our findings demonstrate reduced functional brain connectivity during response inhibition in adults with ASD. As alpha-band synchrony has been linked to top-down control mechanisms, we propose that the lack of alpha synchrony observed in our ASD group may reflect difficulties in suppressing task-irrelevant information, interfering with inhibition in real-life situations.
Keywords