Reduced dimension stimulus decoding and column-based modeling reveal architectural differences of primary somatosensory finger maps between younger and older adults
Avinash Kalyani,
Oliver Contier,
Lisa Klemm,
Elena Azañon,
Stefanie Schreiber,
Oliver Speck,
Christoph Reichert,
Esther Kuehn
Affiliations
Avinash Kalyani
Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, 39120, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120, Germany; Corresponding author at: Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, 39120, Germany
Oliver Contier
Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany; Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, 04103, Germany
Lisa Klemm
Leibniz Institute for Neurobiology (LIN), Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, 39120, Germany; Clinic for Neurology, Otto-von-Guericke University Magdeburg, 39120, Germany
Elena Azañon
Leibniz Institute for Neurobiology (LIN), Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, 39120, Germany; Clinic for Neurology, Otto-von-Guericke University Magdeburg, 39120, Germany
Stefanie Schreiber
German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120, Germany; Clinic for Neurology, Otto-von-Guericke University Magdeburg, 39120, Germany
Oliver Speck
German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120, Germany; Leibniz Institute for Neurobiology (LIN), Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, 39120, Germany; Department Biomedical Magnetic Resonance (BMMR), Otto-von-Guericke University Magdeburg, Germany; Research Campus STIMULATE, Otto von Guericke University, Magdeburg, Germany
Christoph Reichert
Leibniz Institute for Neurobiology (LIN), Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, 39120, Germany; Research Campus STIMULATE, Otto von Guericke University, Magdeburg, Germany
Esther Kuehn
Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, 39120, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, 39120, Germany; Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany
The primary somatosensory cortex (SI) contains fine-grained tactile representations of the body, arranged in an orderly fashion. The use of ultra-high resolution fMRI data to detect group differences, for example between younger and older adults’ SI maps, is challenging, because group alignment often does not preserve the high spatial detail of the data. Here, we use robust-shared response modeling (rSRM) that allows group analyses by mapping individual stimulus-driven responses to a lower dimensional shared feature space, to detect age-related differences in tactile representations between younger and older adults using 7T-fMRI data. Using this method, we show that finger representations are more precise in Brodmann-Area (BA) 3b and BA1 compared to BA2 and motor areas, and that this hierarchical processing is preserved across age groups. By combining rSRM with column-based decoding (C-SRM), we further show that the number of columns that optimally describes finger maps in SI is higher in younger compared to older adults in BA1, indicating a greater columnar size in older adults’ SI. Taken together, we conclude that rSRM is suitable for finding fine-grained group differences in ultra-high resolution fMRI data, and we provide first evidence that the columnar architecture in SI changes with increasing age.