Frontiers in Microbiology (Feb 2024)

Ruminal microbiota and muscle metabolome characteristics of Tibetan plateau yaks fed different dietary protein levels

  • Kaiyue Pang,
  • Kaiyue Pang,
  • Kaiyue Pang,
  • Jianmei Wang,
  • Shatuo Chai,
  • Shatuo Chai,
  • Shatuo Chai,
  • Yingkui Yang,
  • Yingkui Yang,
  • Yingkui Yang,
  • Xun Wang,
  • Xun Wang,
  • Xun Wang,
  • Shujie Liu,
  • Shujie Liu,
  • Shujie Liu,
  • Cheng Ding,
  • ShuXiang Wang,
  • ShuXiang Wang,
  • ShuXiang Wang

DOI
https://doi.org/10.3389/fmicb.2024.1275865
Journal volume & issue
Vol. 15

Abstract

Read online

IntroductionThe dietary protein level plays a crucial role in maintaining the equilibrium of rumen microbiota in yaks. To explore the association between dietary protein levels, rumen microbiota, and muscle metabolites, we examined the rumen microbiome and muscle metabolome characteristics in yaks subjected to varying dietary protein levels.MethodsIn this study, 36 yaks were randomly assigned to three groups (n = 12 per group): low dietary protein group (LP, 12% protein concentration), medium dietary protein group (MP, 14% protein concentration), and high dietary protein group (HP, 16% protein concentration).Results16S rDNA sequencing revealed that the HP group exhibited the highest Chao1 and Observed_species indices, while the LP group demonstrated the lowest. Shannon and Simpson indices were significantly elevated in the MP group relative to the LP group (P < 0.05). At the genus level, the relative abundance of Christensenellaceae_R-7_group in the HP group was notably greater than that in the LP and MP groups (P < 0.05). Conversely, the relative abundance of Rikenellaceae_RC9_gut_group displayed an increasing tendency with escalating feed protein levels. Muscle metabolism analysis revealed that the content of the metabolite Uric acid was significantly higher in the LP group compared to the MP group (P < 0.05). The content of the metabolite L-(+)-Arabinose was significantly increased in the MP group compared to the HP group (P < 0.05), while the content of D-(-)-Glutamine and L-arginine was significantly reduced in the LP group (P < 0.05). The levels of metabolites 13-HPODE, Decanoylcarnitine, Lauric acid, L-(+)-Arabinose, and Uric acid were significantly elevated in the LP group relative to the HP group (P < 0.05). Furthermore, our observations disclosed correlations between rumen microbes and muscle metabolites. The relative abundance of NK4A214_group was negatively correlated with Orlistat concentration; the relative abundance of Christensenellaceae_R-7_group was positively correlated with D-(-)-Glutamine and L-arginine concentrations.DiscussionOur findings offer a foundation for comprehending the rumen microbiome of yaks subjected to different dietary protein levels and the intimately associated metabolic pathways of the yak muscle metabolome. Elucidating the rumen microbiome and muscle metabolome of yaks may facilitate the determination of dietary protein levels.

Keywords