International Journal of Technology (Jan 2020)

Microstructure and Mechanical Properties of Ah-36 Steel Weldment Welded using Magnesium Modified E6013 Electrode

  • Dewin Purnama,
  • Winarto Winarto,
  • Nofrijon Sofyan,
  • Adhi Prihastomo,
  • Kazuhiro Ito

DOI
https://doi.org/10.14716/ijtech.v11i1.2737
Journal volume & issue
Vol. 11, no. 1
pp. 48 – 59

Abstract

Read online

The base metal used in this study was high strength low alloy (HSLA) AH-36 steel. The welding process used the E6013 as a rutile electrode. Four rutile electrodes were produced by adding Mg metal powder, ranging from 0 to 5 wt.%, to the initial electrode layer in such a way as to obtain Mn and Si deposits according to ANSI/AWS standard A5.1-91. The shielded metal arc welding (SMAW) method was used with heat inputs of 1.5 kJ/mm and 2.5 kJ/mm. The tensile property, Charpy-V impact, and microhardness tests were performed to measure the mechanical properties of the weld metal. The observation of the metallographic structure was performed using an optical microscope. The results showed that with the increase of Mg layer content, the metal-oxygen level decreased, and the content of Mn and Si increased. The toughness and tensile strength of AH-36 steel improved, and the optimal Mg content is determined.

Keywords