iScience (Dec 2021)

Robust deep learning model for prognostic stratification of pancreatic ductal adenocarcinoma patients

  • Jie Ju,
  • Leonoor V. Wismans,
  • Dana A.M. Mustafa,
  • Marcel J.T. Reinders,
  • Casper H.J. van Eijck,
  • Andrew P. Stubbs,
  • Yunlei Li

Journal volume & issue
Vol. 24, no. 12
p. 103415

Abstract

Read online

Summary: A major challenge for treating patients with pancreatic ductal adenocarcinoma (PDAC) is the unpredictability of their prognoses due to high heterogeneity. We present Multi-Omics DEep Learning for Prognosis-correlated subtyping (MODEL-P) to identify PDAC subtypes and to predict prognoses of new patients. MODEL-P was trained on autoencoder integrated multi-omics of 146 patients with PDAC together with their survival outcome. Using MODEL-P, we identified two PDAC subtypes with distinct survival outcomes (median survival 10.1 and 22.7 months, respectively, log rank p = 1 × 10−6), which correspond to DNA damage repair and immune response. We rigorously validated MODEL-P by stratifying patients in five independent datasets into these two survival groups and achieved significant survival difference, which is superior to current practice and other subtyping schemas. We believe the subtype-specific signatures would facilitate PDAC pathogenesis discovery, and MODEL-P can provide clinicians the prognoses information in the treatment decision-making to better gauge the benefits versus the risks.

Keywords