Remote Sensing (Sep 2021)

Assessing Urban Landslide Dynamics through Multi-Temporal InSAR Techniques and Slope Numerical Modeling

  • Nicușor Necula,
  • Mihai Niculiță,
  • Simone Fiaschi,
  • Rinaldo Genevois,
  • Paolo Riccardi,
  • Mario Floris

DOI
https://doi.org/10.3390/rs13193862
Journal volume & issue
Vol. 13, no. 19
p. 3862

Abstract

Read online

Landslides threaten more than before the urbanized areas and are a worldwide growing problem for the already affected communities and the local authorities committed to landslide risk management and mitigation. For this reason, it is essential to analyze landslide dynamics and environmental conditioning factors. Various techniques and instruments exist for landslide investigation and monitoring. Out of these, Multi-temporal Synthetic Aperture Radar Interferometry (MT-InSAR) techniques have been widely used in the last decades. Their capabilities are enhanced by the availability of the active Sentinel-1 mission, whose 6-day revisiting time enables near real-time monitoring of landslides. Interferometric results, coupled with ground measurements or other approaches such as numerical modeling, significantly improve the knowledge of the investigated surface processes. In this work, we processed the C-band SAR images of the available European Space Agency (ESA) satellite missions, using MT-InSAR methods to identify the surface deformations related to landslides affecting the Iași Municipality (Eastern Romania). The results (i.e., velocity maps) point out the most active landslides with velocities of up to 20 mm/year measured along the satellite Line of Sight (LOS). Following, we focused on the most problematic landslide that affects the Țicău neighborhood and is well-known for its significant implications that it had. To better understand its behavior and the sensitivity of the displacements to the environmental factors (i.e., rainfall), we carried out 2D numerical modeling using a finite difference code. The simulated displacement field is consistent with the InSAR displacements and reveals the most active sectors of the landslide and insights about its mechanism.

Keywords