Geophysical Research Letters (Feb 2024)

Vegetation Greening and Climate Warming Increased the Propagation Risk From Meteorological Drought to Soil Drought at Subseasonal Timescales

  • Feng Ma,
  • Xing Yuan

DOI
https://doi.org/10.1029/2023GL107937
Journal volume & issue
Vol. 51, no. 4
pp. n/a – n/a

Abstract

Read online

Abstract Subseasonal droughts including flash droughts have occurred frequently in recent years, which are accompanied by heatwaves or wildfires that raise a wide concern on environmental risk. However, the changing characteristics of subseasonal drought propagation, and the possible climate and environmental drivers remain unknown. This study quantifies the propagation characteristics from meteorological drought to soil drought using a Copula‐based Bayesian framework, and shows that higher propagation risks mainly occur in more humid regions with denser vegetation cover. Trends in drought propagation risk vary regionally, with a global increase of 2%/decade (p 71% of the global vegetated lands, with mean contribution rates of 39.5% and 36.5% respectively. Other climatic factors including vapor pressure deficit and precipitation also paly critical roles, which closely correlate with temperature and vegetation. These findings highlight the importance of vegetation greening on subseasonal drought propagation dynamics.

Keywords