BMC Chemistry (Oct 2023)
Development of an eco-friendly HPLC method for the stability indicating assay of binary mixture of ibuprofen and phenylephrine
Abstract
Abstract The development and validation of the stability indicating HPLC technique has contributed to the understanding of the stability profile of ibuprofen (IBU) and phenylephrine (PHE). Stability profile was achieved for PHE; the drug was found to be liable to be influenced by stress oxidative conditions; two oxidative degradants (Deg1 & Deg2) were formed and their structures were confirmed using IR and mass spectrometry. The drugs and degradation products were successfully separated using a gradient elution method on YMC-C8 column with 0.1% hexanesulfonic acid and acetonitrile as a mobile phase at pH 6.6. The flow rate was 1.0 mL/min, and a diode array detector operating at 220 nm was used for UV detection. The retention times of degradants Deg1, Deg2, ibuprofen (IBU), and phenylephrine hydrochloride (PHE) were 2.0, 2.2, 3.2 and 7.0 min, respectively. The proposed method was validated with respect to linearity, accuracy, precision, specificity, and robustness using ICH guidelines. The linearities of ibuprofen and phenylephrine hydrochloride were in the range of 10–100 μg/mL and 0.3–10 μg/mL, respectively. The % recoveries of the two drugs were found to be 100.75 ± 1.44%, 99.67% ± 1.67, and the LOD was found to be 2.75/mL and 0.09/mL for IBU, and PHE, respectively. The method was successfully applied to the estimation of ibuprofen and phenylephrine hydrochloride combination in pharmaceutical dosage form. The proposed technique was validated using ICH guidelines and its greenness was assessed according to Analytical Eco Scale metric (AES). Molecular docking was used to assess the two drugs and PHE oxidative degradants interaction with the stationary phase and to confirm the outcomes of the proposed method with regard to the order of elution of the two drugs and PHE degradation products. Eco-friendly and environmental safety were assessed through the application of one of the most applicable greenness assessment tool; Analytical Eco Scale metric (AES).
Keywords