Pharmaceuticals (Dec 2020)

<i>N</i>-(Hydroxyalkyl) Derivatives of <i>tris</i>(1<i>H</i>-indol-3-yl)methylium Salts as Promising Antibacterial Agents: Synthesis and Biological Evaluation

  • Sergey N. Lavrenov,
  • Elena B. Isakova,
  • Alexey A. Panov,
  • Alexander Y. Simonov,
  • Viktor V. Tatarskiy,
  • Alexey S. Trenin

DOI
https://doi.org/10.3390/ph13120469
Journal volume & issue
Vol. 13, no. 12
p. 469

Abstract

Read online

The wide spread of pathogens resistance requires the development of new antimicrobial agents capable of overcoming drug resistance. The main objective of the study is to elucidate the effect of substitutions in tris(1H-indol-3-yl)methylium derivatives on their antibacterial activity and toxicity to human cells. A series of new compounds were synthesized and tested. Their antibacterial activity in vitro was performed on 12 bacterial strains, including drug resistant strains, that were clinical isolates or collection strains. The cytotoxic effect of the compounds was determined using an test with HPF-hTERT (human postnatal fibroblasts, immortalized with hTERT) cells. The activity of the obtained compounds depended on the carbon chain length. Derivatives with C5–C6 chains were more active. The minimum inhibitory concentration (MIC) of the most active compound on Gram-positive bacteria, including MRSA, was 0.5 μg/mL. Compounds with C5–C6 chains also revealed high activity against Staphylococcus epidermidis (1.0 and 0.5 μg/mL, respectively) and moderate activity against Gram-negative bacteria Escherichia coli (8 μg/mL) and Klebsiella pneumonia (2 and 8 μg/mL, respectively). However, they have no activity against Salmonella cholerasuis and Pseudomonas aeruginosa. The most active compounds revealed higher antibacterial activity on MRSA than the reference drug levofloxacin, and their ratio between antibacterial and cytotoxic activity exceeded 10 times. The data obtained provide a basis for further study of this promising group of substances.

Keywords