Poultry Science (Sep 2024)

Selenium nanoparticles promotes intestinal development in broilers by inhibiting intestinal inflammation and NLRP3 signaling pathway compared with other selenium sources

  • Yanhong Chen,
  • Caiwei Luo,
  • Shu Li,
  • Xingbo Liu,
  • Yanbing Guo,
  • Yuxin Li,
  • Yuanzhi Wang,
  • Jianmin Yuan

Journal volume & issue
Vol. 103, no. 9
p. 103958

Abstract

Read online

ABSTRACT: This study aimed to investigate how various selenium sources affect the intestinal health of broiler chickens. A total of 384, one-day-old Arbor Acres broilers were weighed and randomly allocated to four treatment groups. The control diet was a basal diet added with: 0.2 mg/kg Sodium Selenite (SS-control), 0.2 mg/kg Selenium nano-particles (Nano-Se), 0.2 mg/kg Selenomethionine (SeMet), and 0.2 mg/kg Selenocysteine (Sec) as the treatments. The results indicated that Nano-Se and SeMet were effective in enhancing the villus height (VH) and the villus height/crypt depth ratio (VH/CD) in the jejunum compared to (SS) (P < 0.05). The inclusion of Nano-Se into the diets increased the mRNA levels of zonula occluden-1 (ZO-1), ZO-2, Occludin, Claudin-1, and Claudin-3 compared to the SS diet (P < 0.05). The SeMet increased the levels of ZO-1 and Claudin-3 compared to the SS (P < 0.05). Moreover, SeMet upregulated the marker genes of intestinal enteroendocrine cells, stem cells, and epithelial cells compared to the SS diet (P < 0.05). However, supplementation of Nano-Se reduced the mRNA levels of interleukin 1β (IL-1β), and IL-8 and the concentration of reactive oxygen species (ROS) in the jejunum compared to the SS (P < 0.05). The Nano-Se and SeMet also increased the protein levels of CAT and SOD compared to the SS and Sec diet (P < 0.05). The number of the goblet cells and Mucin-2 (Muc2) levels were the highest in the Nano-Se group (P < 0.05). The protein expression levels of goblet cell differentiation regulator (v-myc avian myelocytomatosis viral oncogene homolog, c-Myc) were highest in the Nano-Se compared to the SS diet (P < 0.05). The Nano-Se decreased the mRNA and protein levels of NLRP3 signaling pathway-related genes compared to the SS diet (P < 0.05). In conclusion, our study demonstrated that Nano-Se and SeMet are better at improving the intestinal health of 21-day-old broilers. Additionally, Nano-Se demonstrated superior antioxidant and anti-inflammatory effects, promoting the development of intestinal goblet cells by modifying the NLRP3 signaling pathway.

Keywords