<i>Lacticaseibacillus paracasei</i>: Occurrence in the Human Gut Microbiota and <i>K</i>-Mer-Based Assessment of Intraspecies Diversity
Maria Frolova,
Sergey Yudin,
Valentin Makarov,
Olga Glazunova,
Olga Alikina,
Natalia Markelova,
Nikolay Kolzhetsov,
Timur Dzhelyadin,
Viktoria Shcherbakova,
Vladimir Trubitsyn,
Valery Panyukov,
Alexandr Zaitsev,
Sergey Kiselev,
Konstantin Shavkunov,
Olga Ozoline
Affiliations
Maria Frolova
Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
Sergey Yudin
Centre for Strategic Planning of Federal Medical-Biological Agency of Russia, 119121 Moscow, Russia
Valentin Makarov
Centre for Strategic Planning of Federal Medical-Biological Agency of Russia, 119121 Moscow, Russia
Olga Glazunova
Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
Olga Alikina
Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
Natalia Markelova
Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
Nikolay Kolzhetsov
Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
Timur Dzhelyadin
Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
Viktoria Shcherbakova
Laboratory of Anaerobic Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, 142290 Pushchino, Russia
Vladimir Trubitsyn
Laboratory of Anaerobic Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, 142290 Pushchino, Russia
Valery Panyukov
Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
Alexandr Zaitsev
Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 142290 Pushchino, Russia
Sergey Kiselev
Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
Konstantin Shavkunov
Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
Olga Ozoline
Laboratory of Functional Genomics and Cellular Stress, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia
Alignment-free approaches employing short k-mers as barcodes for individual genomes have created a new strategy for taxonomic analysis and paved a way for high-resolution phylogeny. Here, we introduce this strategy for the Lacticaseibacillus paracasei species as a taxon requiring barcoding support for precise systematics. Using this approach for phylotyping of L. paracasei VKM B-1144 at the genus level, we identified four L. paracasei phylogroups and found that L. casei 12A belongs to one of them, rather than to the L. casei clade. Therefore, we propose to change the specification of this strain. At the genus level we found only one relative of L. paracasei VKM B-1144 among 221 genomes, complete or available in contigs, and showed that the coding potential of the genome of this “rare” strain allows its consideration as a potential probiotic component. Four sets of published metagenomes were used to assess the dependence of L. paracasei presence in the human gut microbiome on chronic diseases, dietary changes and antibiotic treatment. Only antibiotics significantly affected their presence, and strain-specific barcoding allowed the identification of the main scenarios of the adaptive response. Thus, suggesting bacteria of this species for compensatory therapy, we also propose strain-specific barcoding for selecting optimal strains for target microbiomes.