Applied Sciences (Aug 2020)

NIR Hyperspectral Imaging Technology Combined with Multivariate Methods to Identify Shrimp Freshness

  • Rongke Ye,
  • Yingyi Chen,
  • Yuchen Guo,
  • Qingling Duan,
  • Daoliang Li,
  • Chunhong Liu

DOI
https://doi.org/10.3390/app10165498
Journal volume & issue
Vol. 10, no. 16
p. 5498

Abstract

Read online

In this study, a hyperspectral imaging system of 866.4–1701.0 nm, combined with a variety of spectral processing methods were adopted to identify shrimp freshness. To gain the optimal model combination, three preprocessing methods (Savitzky-Golay first derivative (SG1), multivariate scatter correction (MSC), and standard normal variate (SNV)), three characteristic wavelength extraction algorithms (random frog algorithm (RFA), uninformative variables elimination (UVE), and competitive adaptive reweighted sampling (CARS)), and four discriminant models (partial least squares discrimination analysis (PLS-DA), least squares support vector machine (LSSVM), random forest (RF), and extreme learning machine (ELM)) were employed for experimental study. First of all, due to the full wavelength modeling analysis, three preprocessing methods were utilized to preprocess the original spectral data. The analysis showed that the spectral data processed by the SNV method had the best performance among the four discriminant models. Secondly, due to the characteristic wavelength modeling analysis, three characteristic wavelength extraction algorithms were utilized to extract the characteristic wavelength of the SNV-processed spectral data. It was found that the CARS algorithm achieved the best performance among the three characteristic wavelength extraction algorithms, and the combining adoption of the ELM model and different characteristic wavelength extraction algorithms obtained the best results. Therefore, the model based on SNV-CARS-ELM obtained the best performance and was elected as the optimal model. Lastly, for accurately and explicitly displaying the refrigeration days of shrimps, the original hyperspectral images of shrimps were substituted into the SNV-CARS-ELM model, thus obtaining the general classification accuracy of 97.92%, and the object-wise method was used to visualize the classification results. As a result, the method proposed in this study can effectively detect the freshness of shrimps.

Keywords