Atmosphere (May 2022)

A Study of a Miniature TDLAS System Onboard Two Unmanned Aircraft to Independently Quantify Methane Emissions from Oil and Gas Production Assets and Other Industrial Emitters

  • Abigail Corbett,
  • Brendan Smith

DOI
https://doi.org/10.3390/atmos13050804
Journal volume & issue
Vol. 13, no. 5
p. 804

Abstract

Read online

In recent years, industries such as oil and gas production, waste management, and renewable natural gas/biogas have made a concerted effort to limit and offset anthropogenic sources of methane emissions. However, the state of emissions, what is emitting and at what rate, is highly variable and depends strongly on the micro-scale emissions that have large impacts on the macro-scale aggregates. Bottom-up emissions estimates are better verified using additional independent facility-level measurements, which has led to industry-wide efforts such as the Oil and Gas Methane Partnership (OGMP) push for more accurate measurements. Robust measurement techniques are needed to accurately quantify and mitigate these greenhouse gas emissions. Deployed on both fixed-wing and multi-rotor unmanned aerial vehicles (UAVs), a miniature tunable diode laser absorption spectroscopy (TDLAS) sensor has accurately quantified methane emissions from oil and gas assets all over the world since 2017. To compare bottom-up and top-down measurements, it is essential that both values are accompanied with a defensible estimate of measurement uncertainty. In this study, uncertainty has been determined through controlled release experiments as well as statistically using real field data. Two independent deployment methods for quantifying methane emissions utilizing the in situ TDLAS sensor are introduced: fixed-wing and multi-rotor. The fixed-wing, long-endurance UAV method accurately measured emissions with an absolute percentage difference between emitted and mass flux measurement of less than 16% and an average error of 6%, confirming its suitability for offshore applications. For the quadcopter rotary drone surveys, two flight patterns were performed: perimeter polygons and downwind flux planes. Flying perimeter polygons resulted in an absolute error less than 36% difference and average error of 16.2%, and downwind flux planes less than 32% absolute difference and average difference of 24.8% when flying downwind flux planes. This work demonstrates the applicability of ultra-sensitive miniature spectrometers for industrial methane emission quantification at facility level with many potential applications.

Keywords