Frontiers in Bioengineering and Biotechnology (Feb 2016)

Model based design of biochemical micro-reactors

  • Tobias eElbinger,
  • Markus eGahn,
  • Maria eNeuss-Radu,
  • Falk M. Hante,
  • Lars M. Voll,
  • Günter eLeugering,
  • Peter eKnabner

DOI
https://doi.org/10.3389/fbioe.2016.00013
Journal volume & issue
Vol. 4

Abstract

Read online

Mathematical modelling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation and optimization of metabolic processes in biochemical micro-reactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first micro-reactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments multi-enzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions.The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multi-enzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the micro-reactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns which differ for different experimental arrangements. Furthermore, the total output of G6P increases for scenarios where microcompartimentation of enzymes occurs. These results show that spatially resolved models are needed in the description of the conversion processes. Finally, the enzyme stoichiometry on the nano-beads is determined, which maximizes the production of glucose-6-phosphate.

Keywords