Nanoscale Research Letters (Jul 2019)

Gas Sensors Based on Chemically Reduced Holey Graphene Oxide Thin Films

  • Ming Yang,
  • Yanyan Wang,
  • Lei Dong,
  • Zhiyong Xu,
  • Yanhua Liu,
  • Nantao Hu,
  • Eric Siu-Wai Kong,
  • Jiang Zhao,
  • Changsi Peng

DOI
https://doi.org/10.1186/s11671-019-3060-5
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 8

Abstract

Read online

Abstract The nanosheet stacking phenomenon in graphene thin films significantly deteriorates their gas-sensing performance. This nanosheet stacking issue should be solved and reduced to enhance the gas detection sensitivity. In this study, we report a novel ammonia (NH3) gas sensor based on holey graphene thin films. The precursors, holey graphene oxide (HGO) nanosheets, were prepared by etching graphene under UV irradiation with Fenton reagent (Fe2+/Fe3+/H2O2). Holey graphene was prepared by the reduction of HGO (rHGO) with pyrrole. Holey graphene thin-film gas sensors were prepared by depositing rHGO suspensions onto the electrodes. The resulting sensing devices show excellent response, sensitivity, and selectivity to NH3. The resistance change is 2.81% when the NH3 level is as low as 1 ppm, whereas the resistance change is 11.32% when the NH3 level is increased to 50 ppm. Furthermore, the rHGO thin-film gas sensor could be quickly restored to their initial states without the stimulation with an IR lamp. In addition, the devices showed excellent repeatability. The resulting rHGO thin-film gas sensor has a great potential for applications in numerous sensing fields because of its low cost, low energy consumption, and outstanding sensing performance.

Keywords