PLoS ONE (Jan 2016)

Effects of Treatment of Treadmill Combined with Electro-Acupuncture on Tibia Bone Mass and Substance PExpression of Rabbits with Sciatic Nerve Injury.

  • Yan Wang,
  • Qiang Tang,
  • Luwen Zhu,
  • Ruyi Huang,
  • Lei Huang,
  • Melanie Koleini,
  • Dequan Zou

DOI
https://doi.org/10.1371/journal.pone.0164652
Journal volume & issue
Vol. 11, no. 11
p. e0164652

Abstract

Read online

The peripheral nervous system may play an important role in normal bone maintenance and remodeling. Substance P (SP) is a neuropeptide associated with bone loss and formation that may mediate the effects of the nervous system. The purpose of this study is to determine if treadmill running combined with electro-acupuncture at Jiaji acupoints (Jiaji-EA) affects tibial bone mass and SP expression in rabbits with sciatic nerve injury. Twenty-four juvenile male New Zealand white rabbits were randomly assigned to one of 4 groups: sham injury control (sham), sciatic never crush control (SNCr), treadmill running (treadmill), and Jiaji-EA combined with treadmill running (ET group). The SNCr, treadmill, and ET groups all had an induced sciatic never crush injury of approximately 2mm. Control groups received no intervention; the treadmill and ET groups were trained by treadmill; the ET group also received Jiaji-EA. After the 4 weeks of treatment, toe-spreading index (TSI), BMD, bone strength, and SP expression in the tibia were significantly lower in the nerve injury groups (SNCr, treadmill, and ET) compared to the sham groups (p<0.05). Treatment (treadmill and ET groups) increased all measures compared to the SNCr group (p<0.05). Further, TSI, BMD, bone strength, and SP expression in the ET group were higher than the treadmill group (p<0.05). Our results indicate that treadmill therapy combined with electro-acupuncture at Jiaji acupoints prevents bone loss in rabbit tibias after sciatic nerve injury. This may occur in two ways: indirectly in association with axon regeneration and directly via loading on the bone mediated through increased SP expression. This study provides important evidence for the clinical treatment of bone loss after peripheral nerve injury.