BMC Biology (Jul 2024)
From birth to bite: the evolutionary ecology of India's medically most important snake venoms
Abstract
Abstract Background Snake venoms can exhibit remarkable inter- and intraspecific variation. While diverse ecological and environmental factors are theorised to explain this variation, only a handful of studies have attempted to unravel their precise roles. This knowledge gap not only impedes our understanding of venom evolution but may also have dire consequences on snakebite treatment. To address this shortcoming, we investigated the evolutionary ecology of venoms of Russell’s viper (Daboia russelii) and spectacled cobra (Naja naja), India’s two clinically most important snakes responsible for an alarming number of human deaths and disabilities. Methodology Several individuals (n = 226) of D. russelii and N. naja belonging to multiple clutches (n = 9) and their mothers were maintained in captivity to source ontogenetic stage-specific venoms. Using various in vitro and in vivo assays, we assessed the significance of prey, ontogeny and sex in driving venom composition, function, and potency. Results Considerable ontogenetic shifts in venom profiles were observed in D. russelii, with the venoms of newborns being many times as potent as juveniles and adults against mammalian (2.3–2.5 ×) and reptilian (2–10 ×) prey. This is the first documentation of the ontogenetic shift in viperine snakes. In stark contrast, N. naja, which shares a biogeographic distribution similar to D. russelii, deployed identical biochemical cocktails across development. Furthermore, the binding kinetics of cobra venom toxins against synthetic target receptors from various prey and predators shed light on the evolutionary arms race. Conclusions Our findings, therefore, provide fascinating insights into the roles of ecology and life history traits in shaping snake venoms.
Keywords