Sensors (Jul 2022)

Black-Box Mathematical Model for Net Photosynthesis Estimation and Its Digital IoT Implementation Based on Non-Invasive Techniques: <i>Capsicum annuum</i> L. Study Case

  • Luz del Carmen García-Rodríguez,
  • Juan Prado-Olivarez,
  • Rosario Guzmán-Cruz,
  • Martin Heil,
  • Ramón Gerardo Guevara-González,
  • Javier Diaz-Carmona,
  • Héctor López-Tapia,
  • Diego de Jesús Padierna-Arvizu,
  • Alejandro Espinosa-Calderón

DOI
https://doi.org/10.3390/s22145275
Journal volume & issue
Vol. 22, no. 14
p. 5275

Abstract

Read online

Photosynthesis is a vital process for the planet. Its estimation involves the measurement of different variables and its processing through a mathematical model. This article presents a black-box mathematical model to estimate the net photosynthesis and its digital implementation. The model uses variables such as: leaf temperature, relative leaf humidity, and incident radiation. The model was elaborated with obtained data from Capsicum annuum L. plants and calibrated using genetic algorithms. The model was validated with Capsicum annuum L. and Capsicum chinense Jacq. plants, achieving average errors of 3% in Capsicum annuum L. and 18.4% in Capsicum chinense Jacq. The error in Capsicum chinense Jacq. was due to the different experimental conditions. According to evaluation, all correlation coefficients (Rho) are greater than 0.98, resulting from the comparison with the LI-COR Li-6800 equipment. The digital implementation consists of an FPGA for data acquisition and processing, as well as a Raspberry Pi for IoT and in situ interfaces; thus, generating a useful net photosynthesis device with non-invasive sensors. This proposal presents an innovative, portable, and low-scale way to estimate the photosynthetic process in vivo, in situ, and in vitro, using non-invasive techniques.

Keywords