Applied Sciences (Sep 2018)

Live Load Distribution Factors for Skew Stringer Bridges with High-Performance-Steel Girders under Truck Loads

  • Iman Mohseni,
  • Yong Kwon Cho,
  • Junsuk Kang

Journal volume & issue
Vol. 8, no. 10
p. 1717


Read online

Because the methods used to compute the live load distribution for moment and shear force in modern highway bridges subjected to vehicle loading are generally constrained by their range of applicability, refined analysis methods are necessary when this range is exceeded or new materials are used. This study developed a simplified method to calculate the live load distribution factors for skewed composite slab-on-girder bridges with high-performance-steel (HPS) girders whose parameters exceed the range of applicability defined by the American Association of State Highway and Transportation Officials (AASHTO)’s Load and Resistance Factor Design (LRFD) specifications. Bridge databases containing information on actual bridges and prototype bridges constructed from three different types of steel and structural parameters that exceeded the range of applicability were developed and the bridge modeling verified using results reported for field tests of actual bridges. The resulting simplified equations for the live load distribution factors of shear force and bending moment were based on a rigorous statistical analysis of the data. The proposed equations provided comparable results to those obtained using finite element analysis, giving bridge engineers greater flexibility when designing bridges with structural parameters that are outside the range of applicability defined by AASHTO in terms of span length, skewness, and bridge width.