Bioengineered (May 2022)

Long non-coding RNA lincRNA-erythroid prosurvival (EPS) alleviates cerebral ischemia/reperfusion injury by maintaining high-temperature requirement protein A1 (Htra1) stability through recruiting heterogeneous nuclear ribonucleoprotein L (HNRNPL)

  • Haifeng Guo,
  • Xia Guo,
  • Shiting Jiang

DOI
https://doi.org/10.1080/21655979.2022.2074738
Journal volume & issue
Vol. 13, no. 5
pp. 12248 – 12260

Abstract

Read online

This study aimed at investigating the role and mechanism of lincRNA-EPS (erythroid prosurvival) in cerebral ischemia/reperfusion (CIR) injury. The results showed that the overexpression of lincRNA-EPS was able to reduce the levels of interleukin-6, tumor necrosis factor-alpha and interleukin-1β stimulated in the OGD-treated Neuro-2a (N-2a) cells. The levels of reactive oxygen species and malondialdehyde were enhanced while the superoxide dismutase levels were reduced by oxygen and glucose deprivation (OGD) treatment, in which the lincRNA-EPS overexpression could reverse this effect in the cells. LincRNA-EPS interacted with high-temperature requirement protein A1 (Htra1) and heterogeneous nuclear ribonucleoprotein L (HNRNPL), and their depletion inhibited the Htra1 mRNA stability in N-2a cells. HNRNPL knockdown blocked lincRNA-EPS overexpression-induced Htra1 expression in the cells. The depletion of Htra1 could rescue lincRNA-EPS overexpression-mediated N-2a cell injury, inflammation, and oxidative stress induced by OGD. Functionally, lincRNA-EPS alleviates CIR injury of the middle cerebral artery occlusion/reperfusion mice in vivo. In conclusion, lincRNA-EPS attenuates CIR injury by maintaining Htra1 stability through recruiting HNRNPL.

Keywords