Mathematical Biosciences and Engineering (Nov 2023)
DlncRNALoc: A discrete wavelet transform-based model for predicting lncRNA subcellular localization
Abstract
The prediction of long non-coding RNA (lncRNA) subcellular localization is essential to the understanding of its function and involvement in cellular regulation. Traditional biological experimental methods are costly and time-consuming, making computational methods the preferred approach for predicting lncRNA subcellular localization (LSL). However, existing computational methods have limitations due to the structural characteristics of lncRNAs and the uneven distribution of data across subcellular compartments. We propose a discrete wavelet transform (DWT)-based model for predicting LSL, called DlncRNALoc. We construct a physicochemical property matrix of a 2-tuple bases based on lncRNA sequences, and we introduce a DWT lncRNA feature extraction method. We use the Synthetic Minority Over-sampling Technique (SMOTE) for oversampling and the local fisher discriminant analysis (LFDA) algorithm to optimize feature information. The optimized feature vectors are fed into support vector machine (SVM) to construct a predictive model. DlncRNALoc has been applied for a five-fold cross-validation on the three sets of benchmark datasets. Extensive experiments have demonstrated the superiority and effectiveness of the DlncRNALoc model in predicting LSL.
Keywords