Abstract Antimicrobial peptides (AMPs) have caught the attention of researchers over the last couple of years due to their unique membrane lytic mechanism for combating antibiotic resistance, which differs from the molecular targets of traditional antibiotics. Although natural AMPs exhibit potential antimicrobial activity against a wide range of microorganisms, some drawbacks, such as toxicity, low antibacterial activity, and high production costs limit their clinical application. To enhance the antimicrobial activity of a series of HSP peptides derived from the natural peptide HSP-1, this study optimized them using a variety of strategies, including net charge, hydrophobic moment, hydrophobicity, and helicity. Optimizing the antimicrobial action of HSP peptides depended mostly on net charge, hydrophobic moment, and hydrophobicity rather than helicity. HSP-M4 may be designed to combat microbial infections because the antimicrobial activity and cytotoxicity assays showed that they exhibited low cytotoxicity and prominent antimicrobial activity, respectively.