Low Computational-Cost Footprint Deformities Diagnosis Sensor through Angles, Dimensions Analysis and Image Processing Techniques
J. Rodolfo Maestre-Rendon,
Tomas A. Rivera-Roman,
Juan M. Sierra-Hernandez,
Ivan Cruz-Aceves,
Luis M. Contreras-Medina,
Carlos Duarte-Galvan,
Arturo A. Fernandez-Jaramillo
Affiliations
J. Rodolfo Maestre-Rendon
Unidad Académica de Ingeniería Biomédica, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Mazatlán Higueras km 3, Col. Genaro Estrada, Mazatlán Sin. 82199, Mexico
Tomas A. Rivera-Roman
Unidad Académica de Ingeniería Biomédica, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Mazatlán Higueras km 3, Col. Genaro Estrada, Mazatlán Sin. 82199, Mexico
Juan M. Sierra-Hernandez
Departamento de Ingeniería Electrónica, División de Ingenierías, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8, Comunidad de Palo Blanco, Salamanca Gto. C.P. 36885, Mexico
Ivan Cruz-Aceves
CONACYT, Centro de Investigación en Matemáticas (CIMAT), A.C., Jalisco S/N, Col. Valenciana, Guanajuato Gto. 36000, Mexico
Luis M. Contreras-Medina
CA Ingeniería de Biosistemas, División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las campanas S/N, Santiago de Querétaro Qro. 76010, Mexico
Carlos Duarte-Galvan
Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa, Av. De las Américas y Blvd. Universitarios, Cd. Universitaria, Culiacán Sin. 80000, Mexico
Arturo A. Fernandez-Jaramillo
Unidad Académica de Ingeniería Biomédica, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Mazatlán Higueras km 3, Col. Genaro Estrada, Mazatlán Sin. 82199, Mexico
Manual measurements of foot anthropometry can lead to errors since this task involves the experience of the specialist who performs them, resulting in different subjective measures from the same footprint. Moreover, some of the diagnoses that are given to classify a footprint deformity are based on a qualitative interpretation by the physician; there is no quantitative interpretation of the footprint. The importance of providing a correct and accurate diagnosis lies in the need to ensure that an appropriate treatment is provided for the improvement of the patient without risking his or her health. Therefore, this article presents a smart sensor that integrates the capture of the footprint, a low computational-cost analysis of the image and the interpretation of the results through a quantitative evaluation. The smart sensor implemented required the use of a camera (Logitech C920) connected to a Raspberry Pi 3, where a graphical interface was made for the capture and processing of the image, and it was adapted to a podoscope conventionally used by specialists such as orthopedist, physiotherapists and podiatrists. The footprint diagnosis smart sensor (FPDSS) has proven to be robust to different types of deformity, precise, sensitive and correlated in 0.99 with the measurements from the digitalized image of the ink mat.