Journal of Inequalities and Applications (Sep 2021)

On some geometric properties for the combination of generalized Lommel–Wright function

  • Hanaa M. Zayed,
  • Teodor Bulboacă

DOI
https://doi.org/10.1186/s13660-021-02690-z
Journal volume & issue
Vol. 2021, no. 1
pp. 1 – 19

Abstract

Read online

Abstract The scope of our investigation is to study the geometric properties of the normalized form of the combination of generalized Lommel–Wright function J ν , λ μ , m $J_{\nu ,\lambda }^{\mu ,m}$ defined by J ν , λ μ , m ( z ) : = Γ m ( λ + 1 ) Γ ( λ + ν + 1 ) 2 2 λ + ν z 1 − ( ν / 2 ) − λ I ν , λ μ , m ( z ) $\mathfrak{J}_{\nu ,\lambda }^{\mu ,m}(z):=\Gamma ^{m}(\lambda +1) \Gamma (\lambda +\nu +1)2^{2\lambda +\nu } z^{1-(\nu /2)-\lambda } \mathcal{I}_{\nu ,\lambda }^{\mu ,m}(\sqrt{z})$ , where I ν , λ μ , m ( z ) : = ( 1 − 2 λ − ν ) J ν , λ μ , m ( z ) + z ( J ν , λ μ , m ( z ) ) ′ $\mathcal{I}_{\nu ,\lambda }^{\mu ,m}(z):=(1-2\lambda -\nu )J_{\nu , \lambda }^{\mu ,m}(z)+z (J_{\nu ,\lambda }^{\mu ,m}(z) )^{ \prime }$ and J ν , λ μ , m ( z ) = ( z 2 ) 2 λ + ν ∑ n = 0 ∞ ( − 1 ) n Γ m ( n + λ + 1 ) Γ ( n μ + ν + λ + 1 ) ( z 2 ) 2 n , $$ J_{\nu ,\lambda }^{\mu ,m}(z)= \biggl(\frac{z}{2} \biggr)^{2\lambda + \nu } \sum_{n=0}^{\infty } \frac{(-1)^{n}}{\Gamma ^{m} (n+\lambda +1 )\Gamma (n\mu +\nu +\lambda +1 )} \biggl(\frac{z}{2} \biggr)^{2n}, $$ with m ∈ N $m\in \mathbb{N}$ , μ > 0 $\mu >0$ and λ , ν ∈ C $\lambda ,\nu \in \mathbb{C}$ , including starlikeness and convexity of order α ( 0 ≤ α − 1 $\lambda >-1$ then Re ( J ν , λ μ , m ( z ) / z ) > α $\operatorname{Re} (\mathfrak{J}_{\nu ,\lambda }^{\mu ,m}(z)/z )>\alpha $ , z ∈ U $z\in \mathbb{U}$ , and if λ ≥ ( 10 − 6 ) / 4 $\lambda \ge (\sqrt{10}-6 )/4$ then the function ( J ν , λ μ , m ( z 2 ) / z ) ∗ sin z $(\mathfrak{J}_{\nu ,\lambda }^{\mu ,m}(z^{2})/z )\ast \sin z$ is close-to-convex with respect to 1 / 2 log ( ( 1 + z ) / ( 1 − z ) ) $1/2\log ((1+z)/(1-z) )$ where ∗ stands for the Hadamard product (or convolution) of two power series.

Keywords