Energies (Sep 2020)
Computationally Efficient Modeling of DC-DC Converters for PV Applications
Abstract
In this work, a computationally efficient approach for the simulation of a DC-DC converter connected to a photovoltaic device is proposed. The methodology is based on a combination of a highly efficient formulation of the one-diode model for photovoltaic (PV) devices and a state-space formulation of the converter as well as an accurate steady-state detection methodology. The approach was experimentally validated to assess its accuracy. The model is accurate both in its dynamic response (tested in full linearity and with a simulated PV device as the input) and in its steady-state response (tested with an outdoor experimental measurement setup). The model detects automatically the reaching of a steady state, thus resulting in lowered computational costs. The approach is presented as a mathematical model that can be efficiently included in a large simulation system or statistical analysis.
Keywords