Sensors (Nov 2021)

The Accuracy and Reliability of Tooth Shade Selection Using Different Instrumental Techniques: An In Vitro Study

  • Nattapong Sirintawat,
  • Tanyaporn Leelaratrungruang,
  • Pongsakorn Poovarodom,
  • Sirichai Kiattavorncharoen,
  • Parinya Amornsettachai

DOI
https://doi.org/10.3390/s21227490
Journal volume & issue
Vol. 21, no. 22
p. 7490

Abstract

Read online

This study aimed to investigate and compare the reliability and accuracy of tooth shade selection in the model using 30 milled crowns via five methods: (1) digital single-lens reflex (DSLR) camera with twin flash (TF) and polarized filter (DSLR + TF), (2) DSLR camera with a ring flash (RF) and polarized filter (DSLR + RF), (3) smartphone camera with light corrector and polarized filter (SMART), (4) intraoral scanner (IOS), and (5) spectrophotometer (SPEC). These methods were compared with the control group or manufacturer’s shade. The CIE Lab values (L, a, and b values) were obtained from five of the methods to indicate the color of the tooth. Adobe Photoshop was used to generate CIE Lab values from the digital photographs. The reliability was calculated from the intraclass correlation based on two repetitions. The accuracy was calculated from; (a) ΔE calculated by the formula comparing each method to the control group, (b) study and control groups were analyzed by using the Kruskal–Wallis test, and (c) the relationship between study and control groups were calculated using Spearman’s correlation. The reliability of the intraclass correlation of L, a, and b values obtained from the five methods showed satisfactory correlations ranging from 0.732–0.996, 0.887–0.994, and 0.884–0.999, respectively. The ΔE from all groups had statistically significant differences when compared to the border of clinical acceptance (ΔE = 6.8). The ΔE from DSLR + TF, DSLR + RF, SMART, and SPEC were higher than clinical acceptance (ΔE > 6.8), whereas the ΔE from IOS was 5.96 and all of the L, a, and b values were not statistically significantly different from the manufacturer’s shade (p < 0.01). The ΔE of the DSLR + RF group showed the least accuracy (ΔE = 19.98), whereas the ∆E of DSLR + TF, SMART, and SPEC showed similar accuracy ∆E (ΔE = 10.90, 10.57, and 11.57, respectively). The DSLR camera combined with a ring flash system and polarized filter provided the least accuracy. The intraoral scanner provided the highest accuracy. However, tooth shade selection deserves the combination of various techniques and a professional learning curve to establish the most accurate outcome.

Keywords